『人間失格』

センチメンタルな日々を過ごしており、折角の機会*1だからと『人間失格』を手に取ってみた。
1日もかからずに読める長さなのもうれしい。

主人公と自分に重なる部分を見つけて涙するところもあり*2、主人公の性遍歴・それを支える容姿や機知の部分には距離を覚えるところもあった。
結構身の入った読書体験ではあったと思う。タイミングの妙だろう。

ただ、しかし、「失格」の内容がそれか…という点で最後に拍子抜けしてしまった。
まあ、精神病に対するイメージの変化も大きいのだろう。

*1:BOOK WALKERのコインも余っているし

*2:うまくいかなさの原因が自分のたちの悪さにあってどうしようもなくなってしまうところなんかがそうだ。周囲を蔑視しているところも呆れるやら身につまされるやら。

平井デジタル相は脱PPAPで電話でのパスワード別送を推奨したのか?

要約: していない.記者会見の主眼はPPAP(自動暗号化ZIPファイル)の廃止であり,パスワード別送は限定的な状況を念頭に置いていると思われる(機密性の高い情報).特に電話は別経路の一例に過ぎない.

次のツイートが話題になったことは記憶に新しいでしょう.


このツイートは11月24日に平井デジタル相が開いた記者会見の記事の紹介ツイートですが,「パスワードを電話で教える」という点で急速に拡散しました.
当日の記者会見の書き起こしが内閣府のページにアップロードされたので,この記事ではデジタル相の具体的な発言を見ていきます.

内閣府の対応

記者会見の初めに,デジタル相は次のように述べています(強調引用者).

まず私から、自動暗号化ZIPファイルの廃止について報告します。以前お話ししたとおり、アイデアボックスで投票数が第1位であった自動暗号化ZIPファイルの廃止については、先週17日の会見で、内閣府内閣官房で廃止する方向で検討を進めているとお話ししましたが、明後日26日に廃止をする予定ということになりました。明後日からということですね。内閣府内閣官房で採用していたZIPファイル送付と同じ経路でパスワードを自動で送る方式は、セキュリティ対策の観点からも、受け取る側の利便性の観点からも、適切なものではないと考えています
 一方で、個人情報等の気密性(引用注: 機密性の誤字)の高い情報を含むファイルを送信する際には、例えばファイルにパスワードをかけるとともに、全く別の経路でパスワードを知らせるということが、まずは適切な対応ではなかったのかと思います
 他省庁の状況についても、NISCと連携しながら実態調査を進めており、その結果を踏まえて、ZIPファイル送信、送付と同じ経路でパスワードを自動で送る方式については廃止するということを促したいと思っています。
 このような取組は、政府内だけでなく、民間にも影響のあるものと考えておりまして、民間企業の対応なども注視しつつ、今後どのようなセキュリティ向上策をとっていくことが望ましいのか、これも実際にいろんなところで仕事をされている民間の方々に、イデアボックスの中にでもまたアイデアを送っていただきたいと思います
 このような例は利用者目線でデジタル改革を進める、そして国民の利便性を実現していくという意味では重要ではないかと思っています。ZIPファイルは以上です。

つまり,まず内閣府ではメールの添付ファイルを自動的に暗号化ZIPしてパスワードを同じ経路で伝送するシステムが運用されており,それの利用を取りやめるということが記者会見の主要なメッセージであることが分かります.
そして別経路を用いてパスワードを伝送するのは機密性が高い情報(個人情報等でしょう)を送信する場合の方法の一つとして挙げられています.まだ電話の話は出ていません←ここ大事.
また,より望ましい方法を模索している段階であることが伺えます.

では,電話でパスワードを送るという話はどこで出てきたのでしょうか.それは会見後の質疑応答のタイミングです.

(問)冒頭にあったZIPファイルについてお尋ねしたいと思います。26日から廃止ということですけれども、26日以降内閣府内閣官房からはどういった形式でファイルの送信をされるのでしょうか。
(答)それはまだ決まっていません(引用者注: 今は決まっているのでこの記事も最後まで読むこと)。いろんなやり方を考えなければいけないと思うんですけれども、セキュリティ上、今のZIPファイル、その運用というのは非常にまずいと思います。かえって危険性が高いと思っているので、そこはこれから検討するということですし、お話ししたとおり、実際いろんなファイルのやりとりを民間の方々も頻繁にやっておられますので、民間の方々の知恵も是非投稿していただければありがたいと考えています。

(問)やり方が決まるまで、暫定的にパスワードとかを付けずに送るということになるんですか。
(答)それは、パスワードを送るとしても、要するに今は同じルートで送っていましたよね。さっきお話ししたとおり、それは絶対にやってはだめと。ですから電話で教えるとか、そういうことにならざるを得ないんじゃないですか。

(問)それか、メールで送るとしても、別のメールとかアドレスとか。
(答)御社は専門家なので、是非アドバイスをください

というわけで,電話はパスワードを送る必要がある場合の方法の一つとして挙げられているのにすぎず,例えば大部分をパスワード暗号化 + 電話によるパスワード伝送に移行するという話ではないのだと分かります.
実際,ITMediaの記事によると内閣府は自身の運用するストレージサービスを主に用いるようです.

 内閣府情報化推進室によると、今後は外部へのファイル送信には内閣府のストレージサービスを活用し、ファイルを共有する。外部の事業者などには内閣府のシステムにアクセスするためのURLとログインパスワードを発行。URLやパスワードは1回限りの使い捨てになるという。

 一方、内閣府のシステムにアクセスできない事業者に対しては、メールでファイルを送信するが、プロジェクトの立ち上げ時に決めたパスワードを利用して開封してもらう。単品ファイルの場合は、WordやExcelなどの暗号化機能を使い、複数のファイルを送信する際はZIPファイルでまとめて暗号化する。単発事業の受注者に対しては、例外的な運用として電話などでパスワードを共有するという。

ストレージサービスにアクセスできない事業者*1では暗号化パスワードを別経路で最初に伝えておくという方式とのことです.
あくまでもこれは例外的なケースではないでしょうか.面倒なセキュリティは回避されがち(そして元よりも残念になってしまうもの)なので,パスワード別送が常態化しないようにうまくやってほしいものです.

民間への波及

内閣府の決定は民間にも波及しているようです.うーん残念.
どのような方法を採用するのが良いのかは以下の記事が参考になりました.ぜひご覧ください.
zenn.dev

以降ではセキュリティ対策よりもなぜ皆さんの心の中に「パスワードの電話伝送が使われていくのだ」という信念が宿るようになったのかを少し考えます.

ツイッターの反応

11月24日から「電話 パスワード」という語を含むツイートかつRTが50以上のものをを検索しました.いくつか取り上げてカテゴリ分けします.

メディア

特に産経新聞のツイートが一番最初に来たものであることから,「電話パスワード」の拡散に大きな役割を果たしたように思われます*2
メディアを批判したくなった人には「〇〇はクソ」って言うけれど… - 井山梃子歴史館をどうぞ.

まとめサイト

インターネットアルファ(疑念系)

インターネットアルファ(大喜利系)

「電話パスワード」報道への批判

これらの感想ツイートや上で挙げた電話パスワード採用ツイートから分かるように「電話でパスワードを送るようにするべきだと国は考えている」という信念はある程度広まっているようです.
自分はそんなことないんじゃないかなあと思いますが(実際内閣府もストレージサービスがメインのようです),人間はニュースを読まずにリツイートしてしまう存在なので難しいですね.
幸いにして,インターネットのおかげで一般人でも一次情報にアクセスしやすくなっています.例えば記事冒頭の記者会見要旨へのリンクに飛ぶのは一瞬ですし,平井デジタル相は自身のYouTubeチャンネルにも動画をアップロードしています.
www.youtube.com

表面的な情報に対して瞬発的にいっちょ噛みするのはなかなか楽しいのも分かりますが,具体的に起こったことやニュアンスを確認してみるのも健全だと思います.
例えば

  1. いったん(1-2週間)放置して落ち着いてから続報や公式発表を探してみる*3
  2. (まともな)本を探して読んでみる.教科書が良いですよ
  3. センセーショナルでないやり方で議論・発言してみる*4

ということを自分は心掛けるようにしています.皆さんもぜひ.

*1:これがどういうものなのかが自分はよくわかりません.事業者側で対応できていないということでしょうか?

*2:一応「暫定的」とは書いてありますが

*3:でも内閣府の書き起こしはもう少し早く出てほしい…

*4:皆さんのコメントもお待ちしています

数学に正解は一つしかないのか?

概要: 自分はそうは思わないし,数学はもっと広く捉えられるべきだろう.

元ネタ:
dafuyafu.hatenablog.com

記事の主張は「数学の学習は寛容性を育む」ということだが,その点については同意も否定もしない*1
ただ面白いのが

数学が他の学問とはっきりと違うことは真の意味で正解が一つしか無いことである

と主張していることだ.これは数学の哲学における数学的実在論である.
著者は次のように続ける(強調は自分が追加):

(注: 社会科学における正しさはある種恣意的であるものの)一方で数学は基本的に正しいとされているものは(現代の一般的な数学においては)ZFC公理系のみであり、それと一階述語論理の重なり合った推論を用いて数学は記述されている。つまり、そのルールに違反しているものはすべて一様に間違いであり、そこに人間の恣意的な部分が入り込む余地は全く残されていない。「正しそう」「多くの人に支持されている」などといったものは厳密には数学には存在せず、そこには「正しい」と「間違い」しかない

すなわち,数学的な命題の真偽は我々人間とは独立に定まっており(太陽が我々とは独立して「実在」するように),数学とは真理に接近するための手段であるのだ*2
このような立場は一般の人たちにも広く受け入れられているだろう.数学の命題は十分注意を払えば取り違えなんて起こらないような明確さで記述されているし,数学的な議論というのは我々が普段するような議論とは異なってとても厳密さに注意を払っているようである.学校教育は数学という科目でそのようなただ一つの正解を教え込んでいるのだ!
しかし「数学者」が実際にやっていることを眺めてみると案外そうでもないかも…という気になるかもしれない.自分は残念ながら数学者ではないのだが*3,数学の哲学を含む科学哲学に興味を持つ立場から意見を述べたい.

数学の様々な基礎づけ

ZFC公理系による公理的な集合論が現代の数学における標準的な基礎づけである,すなわちZFCを公理系として採用することは合理的なことであり*4代数学をその上に展開することができる,ということは広く受け入れられていることである.
しかし,数学にはそれ以外の基礎づけも知られている.この記事では型理論を基にした基礎づけを紹介しよう.

型理論では数学の項に対して型を割り当てる.例えば0や100という数値には整数型が割り当てられるし,「∀x∃y. xRy」のような命題を表す項には真理値型が割り振られるだろう.プログラミング言語を触ったことがある人にはなじみ深い概念かもしれない*5
型理論を用いた数学の基礎づけでは,型の合わない文は無意味である.これは集合の所属関係∈のみをベースとし,「7 ∈ 42」が有意味である(しかも適当な構成の下で真ですらある)ZFCとは対照的である.
型理論ベースの数学は定理証明支援系の分野で広く用いられている.

例えば,Isabelle/HOLという定理証明支援系ではSimple Type Theoryという型理論をベースに高階論理を用いて数学を形式化している.Isabelle/HOLで形式化された数学の一つにはHOL-Analysis(実解析)がある.
Simple Type Theoryよりも高度な型理論,特に依存型を用いた定理証明支援系も良く使われている.その典型例がCoqやLeanだろう.Leanのmathlibでは「数学者」とコンピュータ科学者が共同で数学の形式化に取り組んでいるようだ.
これらの体系は型理論をベースとしているという点では似ているが,採用している公理系は異なる.例えば,Isabelle/HOLでは排中律やHilbertの選択演算子(選択公理より強いらしい)を公理として導入しているが,CoqやLeanでは公理ではない(もしくは慎み深く部分的に用いられる).
当然,片方の体系では成立する定理がもう片方の体系では成立しないということもある.「数学に一つの正解しか存在しない」ならば,彼らのいずれかは間違っていることになりそうだ.
しかし自分はそうは思わない.特に数学には複数の「正解」が存在すると捉えるのが良いと考える.つまり,やりたい「数学」を便利に展開できるように公理系は好きに選べば良いのだ.

型理論ベースの数学でも集合論的な議論は良く用いられている.ただし,その定式化のされ方は,既存の型をベースにして分出公理によって部分集合を構築するようなやり方である.
一方,ZFCでは分出公理は導出される定理の一つであり,これらの体系間で集合の様相というのは異なっているように見える.HOLZF(ZFCをIsabelle/HOL上で形式化したもの)では「ZF集合(の型を持つ項)全体の集合」なんてものも定義できてしまう.
しかし,それでもZFCの集合と型理論上の集合で同じようにクリーネの不動点定理を証明することができる.
これはある意味当然なことである.なぜなら,数学の公理系は我々の行うような数学的議論を再現し正当化するために作られてきたからである.
一方でこの事実は驚くべきことでもある.異なる数学の基礎づけ(それぞれ成立する定理も異なる)が同じ「数学」(順序集合の理論)を再現できるからである.
自然言語に例えるならば,日本語と英語はそれぞれ異なる言語であるけれども「涼宮ハルヒ」はどちらの言語でも刊行できるということだ(細部のニュアンスは変わってしまうだろうが).

我々(や「数学者」)のやりたい「数学」が様々な公理系で展開できるのならば,それらから一つを選ぶ理由は外から与えられるであろう.
それは例えばコミュニティにおいてスタンダードであったり自分が慣れている(ZFC公理系)からかもしれない.一方で,定理証明支援系の分野で型理論が広く使われているのはプログラミング言語との相性の良さだろう.
もしくは「論文になるならなんでもやる」のかもしれない(これはやりたい「数学」のために公理系を選ぶ例だが).


もしくは一つを選ぶ必要すら無いかもしれない.我々が消費税を計算する際に実数の構成までいちいち後戻りしないように,通常の「数学者」もやりたい「数学」のために公理系まで戻る必要は無いし,実際気にしないことが多いと想像している*6

数学の範囲

一方で様々な基礎づけが用いられている状況を実在論者の視点から擁護することもできる.つまり,今我々が持っている公理系は「未完成」であり,「真の数学」のイデアを射影したようなものなのだ.
この視点から見ると,同じ「数学」(順序の理論)が種々の公理系から再現できることはまさに実在論の証拠となる.なぜならば,異なる数学体系から順序の理論がそれぞれ構築できるということは,順序の理論が数学の形式化とは独立した対象(実在)であることを意味しているからだ*7
したがって,「数学には一つの正解しか存在しない」(真の数学だけが数学である).しかしそれぞれの公理系を採用する「数学者」たちは別に間違っているわけではない.彼らは様々な方法で真理(真の数学)に接近しようと努力しているのだ.

自分はこの視点も筋は通っていると思う.ただし,現状真の数学を我々が獲得できていない以上,この立場では「数学者」がやっていることが数学では無くなってしまう.「前数学」とでも呼べばよいのだろうか.
しかし,そのようなラベリングはあまり豊かではないと考えている.「数学者」が(とりわけ)やっていることは数学だと考えるのが我々の言語感覚にマッチしているし,そこに色々面白いことがあると思うのだ.

前数学も数学に含めるような感覚は歴史的にも肯定できる.例えば,ピタゴラス学派が三平方の定理を発見したとき・古代インドでゼロの概念が発見(発明?)されたとき,彼らのやっていたことはその時代で最先端の数学と呼ぶのがふさわしいだろう.
当時にも『原論』のような公理化の動きはあったのかもしれないが,それらと現代の基礎づけの厳密さとは比べるべくもないだろう.しかし彼らは数学者であったはずだ.
ニュートンライプニッツ微積分学を発見(考案?)した.オイラーはその上に豊かな力学の世界を築いたのだ.彼らの働きを数学からのけてしまうのは不適切だと思われる.
もしくは,「数学者」たちが現在取り組んでいる未解決問題を考えてみるのも良い.象徴的な例が宇宙際タイヒミュラー理論だろう.考案者らは当然理論が正しいと考えている一方で,「数学者」コミュニティからは疑問の声が挙がっている.
真の数学が存在するという立場からすれば彼らの論争はあまり意味のないことかもしれない.しかし,自分はこのような例を人間の営みの一部の数学としてとても興味深いと考えている.

結局のところ,自分は数学を単なる定義・定理・証明の羅列に還元したくないのである.数学は数学的なアイデアを発見(考案)したりそれを伝達したりするようなプロセスだと考えたいのだ.
この視点からすると,アルゴリズムヒューリスティクスだって数学の一部である.小学生にさくらんぼ計算を教えるとき,我々は足し算というアイデアを具体的なアルゴリズムを通じて伝達しているのだ.
ヒューリスティクスは常に成功するとは限らないという点では「一つの正解」であるとは言いがたい.しかし,ε-δ論法を用いて収束列の評価をするとき,必要条件から逆算していって良さそうなδを見つけるのは数学だ(そして学生は「天下りだ!」と不平を垂れるのだ).
このようなヒューリスティクスは「数学者」の中でも用いられているように見える.例えばフェルマーの最終定理のワイルズによる証明とグロタンディーク宇宙の関係についての質問では

Many working arithmetic and algebraic geometers however take it as an article of faith that in any use of Grothendieck cohomology theories to solve a "reasonable problem", the appeal to the universe axiom can be bypassed.

と述べられており,信頼のおける「数学者」によると実際に回避は可能なようだ.このような信条・テクニックと呼ばれるものはほかにも存在する.例えば「巨大基数公理に関する目覚しい知見の一つとして、それらが無矛盾性の強さ(英語版) から見ると厳密な線形順序に従うという経験則」が存在するらしい.
これらはとても興味深いし,数学だ(と思いたい).

数学ゲームの比喩

元の記事では数学とスポーツ競技を比較して違うものであると述べている部分がある.

学問に限らずに話を広げると、ルールが画一されているという点ではスポーツ競技を思い浮かべることがあるかもしれない。例えばサッカーや野球は全世界でほとんど共通のルールで争われている。しかしながらその勝ち方やゲームの進め方はチームや各選手それぞれである。パスサッカー、カウンター狙い、機動力野球に重量級打線。そのどれもがスポーツのエンターテインメント性を高め、そういった差異がある状態こそがスポーツのコンテンツパワーを向上させている。麻雀に関してはルールさえ画一されていない上に絶対的な正しさを知ることは物理的に不可能である。

自分はこの議論をあまり説得的だとは思えない.それよりも数学とゲームの類似性を際立たせているのではないかとすら思う.
すなわち,数学は(形式化にはいろんなやり方があるとはいえ)ほとんど共通のルールで営まれており,しかしながら勝ち方は各選手それぞれなのだ.代数を使ってもよいし幾何でも解析でもいい.やっていることには差異があるのに,しかし数学ができてしまう.それが数学のコンテンツパワーを向上させているのだ.絶対的な正しさ(真の数学)を知ることはできるのだろうか?自分はとんでもなく難しいと思うけれども,あなたの意見は違うかもしれない(特に実在論者なら).

なんならサッカーコートに立つ必要すらない.チームのオーナーは個々のプレイになんて興味は無くて,動員数が増えればいいのかもしれない.物理学者やコンピュータ科学者,もしくは応用「数学者」が純粋数学の結果だけ刈り取っていくかのように*8
しかし,数学の応用,例えば物理数学が純粋数学の発展に繋がることも歴史的に多々生じてきた.そしてそれは今後も続くだろう(くりこみ群とか).すると数学の応用ですらも数学の範囲に含めてしまっても良い気がしてくる*9

まとめ

自分にとって数学は「数学者」のやることだ.そして,その範囲を広く捉えるとそこには興味深い世界が広がっていると信じている.その世界の中に数学はたくさんあるし,「数学者」は様々な方法で数学と向き合っている.

*1:記事の議論は一番大事なところ(いかに数学の学習が寛容性に繋がるか)が飛躍しているとは思う.例えば「数学にはただ一つの正解があるように,他者との議論においてもただ一つの合意に到達できるのだ」と書いても同等に確からしく見えてしまうだろう.

*2:引用部分を文字通り読むと命題の真偽(「正しさ」)と推論の妥当性(「そのルールに…」)とが混同されているようにも見えるが,これは筆が滑っただけだろう.

*3:コンピュータ科学とか情報工学とか呼ばれている分野の研究をしています

*4:矛盾していることはありそうもないとか

*5:数学の話題が工学の世界に流れてきているのだ.面白いね

*6:そんなことが無かったら申し訳ない

*7:この視点はハッキング『数学はなぜ哲学の問題になるのか』で知った.面白い本だよ

*8:コンピュータ科学者として数学者と論理学者には「本当にありがとう!」と叫びたい

*9:数学の応用は『数学はなぜ哲学の問題になるのか』のメインテーマの一つだ(もう一つは証明).本当に面白いよ.

「〇〇はクソ」って言うけれど…

インターネットやってるとこういう意見,目にしますよね.
〇〇にはマスコミ・掛け算の順序・フェミニストなどなど何でも入っているような気がします.
この記事ではこういった意見を目にしたときに自分がよくやる「思考のくせ」みたいなものを三点紹介したいと思います.

(比較的)いい面を考えてみる

一点目は〇〇が為してきた功績やよい点を考えてみるということです.
例えば,自分は週刊誌のことを下劣だとは思っていますが,彼らが「スクープ」を行ってきたことも確かです.

もしくは〇〇が無くなったときのことを考えてみるのもいいでしょう.
マスコミの報道でミスリーディングな見出しが物議を醸すことはままあることですし,テレビの疑わしい健康情報が残念な帰結を産んだこともあります.
だからといって,マスコミに「取って代わる」ようなものがあるかというと難しいでしょう.
例えば,日常的にデマを撒いてるまとめサイトやアルファツイッタラーに人々が情報を頼るようになるというのは望ましくありません.
その点でマスコミは「マシ」な選択肢であると言うこともできるでしょう.

期待を下げる

二点目は,他人にあまり期待しすぎないことです.スタージョンの黙示(法則)なんて言葉もありますね.
例えば,日本に記者は2万人近くいるようです
それだけいたらクズやバカぐらい…いてもおかしくないでしょう.組織だってダメダメなものです.
もしくは悪意が無くとも単に運が悪かったケースも存在しているように思われます.

この考え方が有効なのは特定の主義を叩いているケース(Toggetterまとめのリンクがついていることが多い)でしょうか.
結局のところ,あらゆる主義の元にはあらゆる程度の人間が集まるのであり,ひどい意見は探そうと思えば見つかるものです.
これらはリツイートまとめサイト,場合によっては伝統的なマスコミを通じて拡散していきます.
すると,外部の人間にとってあたかも〇〇主義にはどうしようもない人たちばかり集まっているように見えてしまうのです.
しかし,そのような見方は極端に過ぎるでしょう.主流派の考え方は穏当かつ現実的なことが多いものです.
そういった真っ当な意見を仕入れるためには,入門書のようなまとまった文章を読むのがよいでしょう.

これらの考え方に共通しているのは,〇〇を単一の存在とみなすのではなく,もっと複雑でゆるやかな集まりと捉えることです.
「マスコミ」「右翼」「左翼」「在日」というものが存在して人格を持っているわけではありません.
それらは多くの人から構成されていて,彼らには日々の生活がありますし,〇〇も彼らを構成するたったの一面にしか過ぎないのです.
やることなすこと上手くいくこともあれば失敗もあります.場が変われば適応に困ることもあるでしょう.
彼らは日々大したことないことで笑ったり泣いたりしていて,我らの社会の大事な仲間なのです.

こういった「思考のくせ」を通じて,自分はインターネットによくある批判を「極端だな」「建設的でないな」とみなすことが多いです.
けれども,自分はそれで怒りを覚えたりするのではなく,どちらかというと諦めに似たような感情を抱くようにしています.
なぜかというと…

裏にある気持ちを理解する

彼らの裏にある気持ちも理解できるからです.

例えば,スキャンダルに触れ続けた結果マスコミを信頼できなくなるという気持ちは理解できます.
もしくは,露骨なイラストを見て思わずぎょっとしたり何か大事なものが冒されたように感じてしまうというのも理解できることです.
そして,いきりたった人間というものは理にかなっているとは限りません(期待を下げる).

ですから,インターネットにおける行き過ぎた意見は,不信感や不安・怒りの表明であると捉えると納得がしやすいです.
文面自体はある意味どうでもよいのです.それらはきっと自身の意見を正当化するような頭のはたらきによって生み出された何かでしょう.

この考え方は人の内面を勝手に推測し押し付けているようなものです.それは不正確で望ましくないと思うかもしれません.
けれども,典型的な批判ツイートに関してはあながち的外れではないと考えています.
少なくとも,批判を目にしたとき,自分が批判をしたいと感じたとき,その元となった感情の動きを理解しようと努めてみるのはよいのではないでしょうか.

今までの社会はクソで,それは今も変わりません.これからもクソであり続けることでしょう.
けれども我らは社会をよくし続けてきたことでしょう.それは今だって可能ですし,これからだって続けていくべきです.
ひどい意見が見つかって拡散して炎上して…という流れは残念なものです.社会の中には現実的な意見を構築している人,現地で改善の努力をしている人がいます.
やっていきましょう.

みんな○○好きねえ

インターネット大盛り上がりに乗れないことがままある.
悲しいね

乗れなかったなリスト:

世代,なのかなあ.でも同世代がハルヒでワイワイしているのを横目でふーんと眺めてるのあったぞ.
別に波に乗る必要は無いし,ぼくの中で盛り上がっていることも他人からすればふーんなんだろうけど
TwitterのオタクどもがキャッキャッしてたりVTuberが話題に出したりをただ見ているしかできない,というのはどうも寂しい.